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Flow between rotating disks. Part 2. Stability 

By A. Z .  SZERI, A. GIRON, S.  J .  SCHNEIDER?, 
Department of Mechanical Engineering, The University of Pittsburgh, Pittsburgh, PA 15261 

AND H. N. K A U F M A N  
Research and Department Center, Westinghouse Electric Co., Beulah Rd, Pittsburgh PA 15235 

(Received 3 June 1982) 

Infinite-disk flows appear to possess multiple solutions a t  E-’ = 275 (Holodniok, 
Kubicek & Hlavacek 1977), where E = u/szw is the Ekman number. One of these 
solutions exhibits characteristics of Couette flow and is stable in the circular domain 
0 < r / s  < 50. The other two solutions, both Poiseuille-type flows, are unstable a t  all 
positions. The stable solution shows strong resemblance to experimental profiles 
obtained between finite disks. Stability of finite-disk flows is investigated in two cases : 
(i) one disk rotating and the other stationary, and (ii) counter-rotating disks. 
Photographs indicate presence of two instability types. Theoretical calculations are 
in fair agreement with experimental evidence on instability of type I. 

1. Introduction 
Although the study of stability of rotating-disk flows goes back some forty years, 

all investigations known to the authors are of flows bounded by a single rotating disk. 
Stuart (1955) examined stability a t  infinite Reynolds number and found good 
agreement with experimental data on the direction of wave propagation but 
overestimated the number of vortices. He then concluded that viscosity must have 
a considerable influence on the wavenumber. Brown (1961) extended Stuart’s 
analysis by considering stability a t  finite Reynolds number. The basic flow equations 
contain curvature and Coriolis terms in the work of Kobayashi, Kohama & 
Takamadate (1980), but the axial velocity component as well as the inplane variation 
of the velocity are neglected. Szeri & Giron (1982) retain the axial velocity, in addition 
to terms considered by Kobayashi, and use an accurate spline expansion. Their results 
compare very favourably with the experimental data of Kobayashi. 

Experimentally, Faller (1963) discovered two types of instabilities, named type I 
and type 11, in the Ekman layer. The waves of each of these families form a series 
of horizontal roll vortices, whose spacing is related to the depth of the boundary layer. 
Others who studied these instabilities include Faller & Kaylor (1966), Tatro & 
Mollo-Christensen (1967), Caldwell & Van Atta (1970) and Weidman (1976). The 
Ekman velocity profiles exhibit numerous inflection points, each of which might give 
rise to instabilities. Faller & Kaylor (1966) found that the location of the type I 
vortices, which are stationary or nearly so, coincides with the first inflection point 
of the radial velocity. Stuart’s (1955) analysis of inviscid instabilities of the flow on 
a single, infinite, rotating disk confirms this. In  fact, Gregory, Stuart & Walker (1955) 
were truly the first to observe and calculate type I instabilities. 

None of the single-disk stability studies referred to above mentioned an important 
discovery of recent years - multiplicity of the basic flow. The Karman similarity 
transformation was shown by Batchelor (1951) to be applicable even when the fluid 

t Also at Research and Development Center, Westinghouse Electric Co. 
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at infinity is rotating about the axis of the disk. Solutions have been obtained for 
various values of y ,  the ratio of angular velocity at  infinity to that of the disk, by 
Rogers & Lance (1960) and others. However, for values of y in the range 
-0.160 > y > - 1.4351 i t  appeared to be impossible to find solutions. It is now clear 
that at  y = - 1.4351 the solution of the equations becomes singular. A t  y = -0.160 
the situation was more mysterious. Weidman & Redekopp ( 1975) suggested singularity 
in this neighbourhood. The mystery was cleared up by Zandbergen & Dijkstra (1977) 
and by Dijkstra (1980), who showed that branching occurs a t  y = -0.16054. 

Multiplicity of basic flows, when the fluid is bounded by two infinite disks, has been 
reported even earlier. The original controversy is associated with the names of 
Batchelor (1951) and Stewartson (1953). Mellor, Chapple & Stokes (1968) produced 
several classes of solutions which are referred to as multiple-cell solutions. More 
recently, Nguyen, Ribault & Florent (1975) found both Batchelor-type and 
Stewartson-type solutions numerically, with the character of the flow depending on 
what starting values were assumed for the marching integration. Holodniok, Kubicek 
&, Hlavacek (1977) identify as many as five solutions to the governing differential 
equations at a given (high) Reynolds number, two of which are of boundary-layer 
type. Their low-Reynolds-number solution is unique and the flow is of the Batchelor 
type, with a substantial portion of the fluid rotating as a rigid body. Additional 
solutions make their appearance as the Reynolds number is increased. Two of these 
solutions are of two-cell type, and there is a Stewartson-type solution exhibiting 
boundary layers on both disks. In  a later paper Holodniok, Kubicek & Hlavacek 
(1981) use finite-difference discretization and Newton's method to demonstrate the 
existence of several additional branches of solution. However, they give detailed 
treatment only to the conditions E-' = 625 and w1/w2 = 0, 1 and - 1. 

The purpose of the present research is to investigate which, if any, of the multiple 
solutions of infinite parallel disk flows (Holodniok et al. 1977) might be realizable in 
the laboratory. A necessary condition, though by no means sufficient, is that the flow 
be stable in some domain of parameter space. We also analyse finite-disk flows and 
show that the flow is least stable a t  the edge of the disk and near the centre of rotation. 

2. Theoretical 
The flow field is bounded by two parallel disks of infinite radii, located at Z3 = 0 

and 2 = s respectively, in the cylindrical polar coordinate system {9, $",a>. We 
define another orthogonal curvilinear coordinate system, the origin of which is located 
on the lower disk at I' = r ,  some 2, via the transformation (Stuart 1955) 

cose-(P+.Qt)sine , 1 
\ 2 3  = z3. 

Relative to the {xi}, the physical components { U,, V,, W,} of the basic flow are given 

U, = cos E U,. - sin e(rQ - V,), 

V, = sine U,.+cose(rQ- V,), 

w, = w,, 
(2) 

by 

where { U,., V,, W,} is the flow velocity relative to { X i } .  
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In  accordance with the linear theory of stability, the basic flow is perturbed by 
an infinitesimal wave. We look for instability to perturbation which propagates in 
the x1 direction, the direction of least stability, with speed Re (hla) relative to {xi} 
and a wavelength of 2nla. Let { u ;  p }  represent the perturbation, then 

{u(x); p ( x ) }  = ( ~ ( 2 ~ ) ;  p(x3)}ei(az1--At). (3) 

The linearized equations that govern the evolution of the perturbation are given 
by Greenspan (1968) : 

(4a) 

divu = 0. (4b)  

U Ix3,o = 0, U ( x 3 _ s  = 0. (4c )  

ihv+ Vgradv+v.grad V+2Qx u = -grad-+vV2u, P 
P 

I n  addition to (4), we require the perturbation velocity to satisfy the conditions: 

The various dimensionless quantities employed in the analysis have the following 

I definitions : 
{xi> = dx, y, A.4 ,  {ux, V,, W,} = V,Cgx, 5, A RI, 

hr ’ 
R e = L ,  v s  g=-, as c=--  Ah A = -  S & = -  

V h a&’ r ’  

s2 a2h s ah 
h2 axi ’ h3 axi ad ’ i , j  = 1 ’ 2 ,  Cj = -- m. = -- J 

(5 )  

and V, = rl2 is the local characteristic velocity. Upon decomposing (4a)  along {xi) and 
substituting ( 5 )  into (4), the following set of equations results: 

av 
ax -iacu-(m,v+iav-m,u) V,+A m, V , + & ~ - m , U , - & -  

1 as d2u dw ”1 ax V, ax $e[ dz2 dz 
SA- w + 2 A v =  --S--- --+iu--(2mlm2-G2 

+iam2)v+(2m$-&,)u , (6a )  1 

1 
ax 

dv 
dz 

-iacv+A- W,+(m,v+iav-m2u) 

, ( 6 6 )  

(7 )  
(m,+ia)u+m,v+- dw = 0. 

dz 

Here we have dropped the bar that signifies a non-dimensional quantity. 
Cross-differentiation eliminates the pressure, and substitution from the equation 
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of continuity ( 7 )  eliminates the velocity component u .  The algebra is tedious and we 
give here only the final result : 

a v  azu, a vo au, a w ,  
(-mi$- m2 8-- 2m; ~ + m, m2 - + m18 -- ax aZ az az a?l '.) v + (iacm, - mi V, - Am aw 2- mzS- a U X  

a2 ax 2 
- Sicrm, -+ a VY io S- 

az aZ ay 
a U X  

aY 
- 2 Vym; + mlm2 U, + m, 8-+ 2Am, - 2iam, V, 

aw, . 
ax m, a2c - m, io8 __ + iuml U ,  

aw, azu, auz - iaAm, -+ iu-- iu3c + u2S-+ ia3 Ux + u2A 
az ax, ax 

iac-m, V o - A ~ - S ~ - i a U x ) * - A ~ ~  d3w 
a Z  ax dz2 

1 dv - 
Re dz 

d2w 
- (2a2mf + ia3ml + a4)w + (2mi - G, + 2a2 + 2ml- I; ,  - icrm,)- 

dz2 

= -[ (zmi -m,G2 + 2m; m2 - c , m ,  + 2iamlm, - 

- 2mi U, - 2Am, + iocm, - m; 0; - 2ium, U, 

dv 
dz 

av 
aY 

- 8m, 2- a2c + a2UX - v + ( - m, A W, - i a A  W,) - 

- - ( m l 3 + i a ~ ) w + ( r n l  Vy-kS--2m2Ux-2A a VY 
az a Z  ax 

1 
Re 

- - -- [ (iami - 2m, mi + &,m, - 2m: + c , m ,  - m, a,- Bium; 

dz 
d2v 
dz2 

+ iu& - ia3) v+ (m, + ia) -+ (iam, -2m, m2 + 

(i) Single disk 

The analysis was utilized to study the flow of a semi-infinite fluid bounded by a single 
disk (Szeri & Giron 1982). We put s = 8*, where 8" is the displacement thickness, 
and applied the second boundary condition (4c) a t  x3 + co. The ratio 8* / r  as well as 
the streamline curvatures m, and m2 are of order Re-' (Schlichting 1979); the 
governing equations were simplified by neglecting terms of order smaller than this, 
obtaining in the process Stuart's (1955) equations. The analysis retains the normal 
gradientof W,in the boundarylayer, and wefind R,  = 8.0128 x lo4, n M 26ande = 14O 
for the critical value of the Reynolds number R = r 2 u / v ,  the number of vortices and 
the direction of least stability respectively. These are to be contrasted with the 
experimental data R,  = 8.8 x lo4, n = 26-33 and e = 13'-15' of Kobayashi et at. 
(1980). 
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(ii) Parallel disks 

As s / r  is no longer related to the Reynolds number, previous simplications of the 
equations are not available. Experimental evidence suggests, however, that  
s / r  < 10-1 and Re > lo3, so that S/Re < Terms of this order or smaller were 
neglected. Thus the governing equations, shown below, contain additional terms not 
considered by Stuart (1955). They do simplify to Stuart's equation, however, under 
t,he proper conditions. 

[d'ur 2&-+(r4~ 
d2W dz2 1 d2w a 2  ri, 

c) ---U2W -----w+-- __- 
(',- (dz2 ) az2 aRe dz4 

2VYco~e-(Ux+c)sin E-2 

-!( U 
e O S € + ( U x - c ) U 2 c O S e  w- 

U 1 
i a rix 

a a Z  aZ -- 8 2  { (2 sin2 e + 2 3 cos2 e- __ 

Vysin2e+2Vycos2e-Uzcosesine+-sine-2cose a W,  
aZ 

dz 
(UZ-c)v+-- ---v2v ---w+S -- (lJ,cose+ V,ssine)v+ W,- 

i ( d S  ) i a V ,  { ; [ 
crRe dz2 U az 

6 av, 3 'b" a 2  ax 
2 + 2 ( V, cos e- [Iz sine - 1 )  - -- ( U, - c )  cos e v --__ cos e u1 

( - 2U, sin2 e + V, sine cos e- 2 sine - U, cos2 e) v- W, cos2 e -  "} = 0. 
dz 

To arrive a t  (9a ,  6 )  the following approximations were made: 

6 x A ,  m, x Scose, m2 x Ssine, 

r,, x S2 cos2 e, r,, z S2 sin e cos e, r2, x S2sin2 e. 

Making use of the von KSrman (1921) similarity transformation, we have 

U, = rQ$(z); V, = rQY(z), W, = (vQ) iH(z) ,  

where 

$ ( z )  = cos e F ( z )  - sin e (1  - G(z)), 

Y(z) = sin e F ( z )  + cos E (1  - G(z)). 
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Here { F ( z ) ,  G(z) ,  H ( z ) }  represents the similarity solution of the basic flow problem 
(Holodniok et al. 1977). Thus from ( l la ,  b )  we have 

Since the velocity component u does not appear in these equations, the boundary 
conditions of (9u, b )  are chosen as 

( z  = 0, I ) ,  

in place of (4c). The condition dwldz = 0 a t  z = 0 , l  is a derived condition: it is 
obtained from the equation of continuity (7) .  

The remainder of this paper is concerned with obtaining solutions of the system 
composed of ( 9 a ,  b )  and boundary conditions (12). 

3. Numerical 
We seek solutions of Eq. (9) in the weak form 

N 

(=I 

N 

a ( z )  = C t+Bt(z),  

Here the B,(z), 1 < i < N are cubic B-splines defined over the partition 

n : O  = z1 < z2 < ... < Zl+, = 1 (14) 

with uniform smoothness 11, = 11 = 3 , 2  < i < 1,  on the interior breakpoints, and a knot 
sequence 

(15) 

( 1 6 4  

1 
z1 = t ,  = t 2  = t ,  = t 4 ,  

z2 = t , ,  

21 = t N ,  

%+l = t N + l  = tN+2 = tN+3 = tN+4 .  

The B-splines have the following relevant properties (de Boor 1978): 

i &(=I) = BN@I+lJ = 1, 

Bj(2,) = 0 ( j  > l ) ,  

Bj(zi+I) = 0 ( j  < N ) ;  
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Bi(z1) = - B k )  * 0, 

The expansions (13) can be forced to satisfy the boundary conditions (12) in the 
strong form via the spline properties (16). This yields 

N-1  N-2 

The approximations (17) are substituted into (9), together with spline expansions for 
the basic flow 

N N N 

p=1 s-1 t - 1  
ux = c u,Bp(z) ,  v, = c KBs(z),  w, = z W,B,(z). (18) 

{Ux, V,, W,} are available in the literature (see e.g. Holodniok et al. 1977). 
I n  the application of Galerkin's method, the expansion (17)  is substituted into (9a, 

b ) .  The first of the resulting equations is multiplied through by elements of the test 
rw and the second equation by elements of rv : 

7w = {B,(z): 3 < i < N-2}, 7" = {Bj (z ) :  2 <j < N -  l}. (19) 

Integration over the domain 0 < z < 1 leads to the complex algebraic eigenvalue 
problem 

The complex matrices X and Y are defined as follows: 

IX-cY I = 0. (20) 

The real matrices A,  B, . . . , Q are given in the appendix. 
The flow is marginally or neutrally stable if there is one eigenvalue with Im (c) = 0 

and Im ( c )  > 0 for all other eigenvalues. It is unstable if a t  least one eigenvalue exists 
with Im ( c )  < 0.  The marginal state is steady if Re ( c )  = 0, but as there is no 
justification to assume that the principle of exchange of stability holds (Kobayashi 
et al. 1980) Re ( c )  + 0 is retained. 

To investigate the accuracy of Galerkin's method with B-splines for stability 
calculations, we have performed numerical studies of plane Poiseuille flow (Szeri & 
Giron 1982). Equations (9a, b)  are easily reducible to the Orr-Sommerfeld equation 
for pressure flow between parallel plates, and the stability of this flow has been studied 
extensively. Grosch & Salwen (1968) used expansions in the eigenfunctions of the 
operator (d2/dz2-a2), and a t  Re = 20000 and a = 2.0 calculated the first eigenvalue 
as c,  = 0.237413+0.003681i, using an expansion involving up to 50 symmetric 
eigenmodes. Orszag ( 197 1 )  employed Chebyshev-polynomial expansion and obtained 
c1 = 0.23752649 +O.O0373967i on a CDC 6600 computer (15 significant digits in 
single precision.) Our result for Re = 20000 and a = 2.0 is c, = 0.237394 
+O.O0373133i, obtained on the PDP-10 (8 significant digits in single precision). 
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Our result of Re, = 11537.09 is in error only by -0.06% when compared with 
Orszag's result. 
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4. Results and discussion 
I n  oneQf the most thorough discussions to date on the primary flow between infinite 

rotating disks, Holodniok et al. (1977, 1981) report unique basic motion at E-l = 100. 
The velocity components of this flow, as obtained from Holodniok's paper, were 
projected onto directions inclined locally to the radius a t  the angle e. The various 
velocity profiles V, = U,  cose+ V,sine obtained in this manner (figure l ) ,  were 
then analysed for stability to infinitesimal disturbances, assumed to propagate in the 
direction characterized by e. Figure 2 shows a plot of the Reynolds number obtained 

1 .oo 

0.75 

z 0.50 

0.25 

0 
0.24 -0.18 -0.12 -0.06 0 0.06 

V, l rw 

FIQURE 1. Directional behaviour of velocity (Holodniok et ul. 1977); infinite disks, one disk rotating, 
E-1 = 100: 0, B = 0'; 0, 20°; A, 40'; +, 60'; X I  80'; 0,  100'; V, 120'; m, 140'; *, 160'. 

R e ,  x 

'I--. 
-20' -10' 0' 10' 20' 30" 

FIGURE 2. Directional behaviour of Reynolds number in marginal state; infinite disks, 
one disk rotating, E-' = 100. 
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Re X 

FIGURE 3. Diagram of neutral stability; infinite disks, one disk rotating, E-I = 100, E = 17'. 

c 

---__---- 
0 - 4 8 12 16 20 24 28 32 

a x  10-3 

FIGURE 4. Variation of Im (c) along a; infinite disks, one disk rotating, E-l = 100: 
-, I m  (cl);  --, I m  (cz):  --, Im (CJ. 

at  the marginal state of stability for a given profile versus the corresponding vortex 
angle 6 ,  indicating that critical conditions occur a t  17' < E < 20'. The complete 
stability diagram for the flow is shown in figure 3. 

When investigating Poiseuille flows or boundary-layer flows, the eigenvalues are 
found to retain their relative ordering over the whole parameter range (Grosh & 
Salwen 1968). They also vary continuously with the parameters; in consequence the 
contour representing marginal state of stability is smooth. None of this holds true 
in the case under consideration. The stability curve of figure 3 exhibits only piecewise 
smoothness. 

Let the symbol a designate a contour in the {cr, Re}-space (figure 3).  This contour 
has the equation cr = 1.7243 x 10-4Re + 3.54. Let the arclength along this contour, 
as measured from the point 0, be a and let aA, ag, ac and aD designate arclengths 
O A ,  OB, OC and OD respectively. At a = 0 all eigenvalues have positive imaginary 
part and the flow is stable to infinitesimal perturbations. Moving from 0 to the right 
along a, we encounter the point A(aA) where the imaginary part of the first eigenvalue 
vanishes. (We labelled the eigenvalue that is dominant at this point in parameter 
space the first eigenvalue cl.) At a = aA, Im (cl) = 0, Im(ck) > 0, k > 1. For 
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FIQURE 5. Variation of Im (c) along p;  infinite disks, one disk rotating, E-' = 100: 
-, Im (cl);  ---, Im (cz); - -, Im ( c 3 ) .  

4.2 
0 10 20 30 40 50 60 

N 

FIQURE 6. Effect of number of terms in (13); infinite disks, one disk rotating, E-' = 100. 

aA < a < aB, Im ( c , )  < 0 and the first eigenmode is unstable. Point B(a,) is again a 
point of neutral stability for the first eigenmode as Im (c , )  = 0 here. The flow remains 
stable in the range ug < a < ac. At point C(a,) the eigenvalue we previously labelled 
c2 becomes real, while Im ( c , )  remains positive. Thus for conditions represented by 
point B,  the second eigenvalue c2 has become the dominant eigenvalue, and the 
corresponding eigenmode represents the greatest danger to  flow stability. In the 
interval (ac, a,) we find Im ( c z )  < 0, Im ( ck )  > 0, k $; 2 ,  and at  point D the conditions 
are characterized by Im ( c2 )  = 0, Im ( ck )  > 0, k =+ 2. These conditions are clearly 
indicated in figure 4. Here Im (ck), k = 1 ,2 ,3 ,  is plotted against the arclength a. 
Conditions existing along contour B are shown in figure 5, where p is the arclength 
measured from 0'. 

For low dimensions of the approximating su bspace the Galerkin B-spline 
formulation is inaccurate. Rapid convergence is found, however, on increasing N in 
(13), as indicated in figure 6. In this respect the reader may also consult Giron (1982). 
All the calculations reported in this paper were performed with N > 40. 

The critical value of the Reynolds number from figure 2 is Re, = 5000. With 
E-l = 100 this places the point of instability a t  r/s = 50. For r / s  > 50 the flow is 
unstable to infinitesimal disturbances. 

At  E-l = 275 Holodniok et al. (1977) display three distinct basic flows. One of these 
flows, designated profile (a) ,  is of the Batchelor type. It is a boundary-layer flow, with 



Flow between rotating disks. Part 2 

15 

14 

Re X 

13 

143 

- 

- 

- 

1 .oo 

0.75 

z 0.50 

0.25 

0 

15 

14 

Re X 

13 
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FIGURE 7. Directional behaviour of velocity (Holodniok et a2. 1977) ; infinite disks, one disk rotating, 
E-I = 375, profile (a):  0, E = 0'; 0, 20'; A, 40'; +, 60'; x ,  80'; 0, 100'; V, 120'; ixI, 140O; 
*, 160'. 

l 2  t 
11 I I 1 I I 

5' lo" 15' 20" 25" 30' 

12 

11 

- 

- I I 1 I I 

E 

FIGURE 8. Directional behaviour of Reynolds number in marginal state; infinite disk, one disk 
rotating, E-' = 275, profile (a) .  

some intermediate angular velocity in rigid-body motion. This almost-rigid core 
occupies approximately 60 % of the volume, leaving approximately 20 Yo each for the 
two boundary layers adjacent to the disks. Profile (a ) ,  which shows strong resemblance 
to the experimental profiles of Szeri et a,?. (1983), measured between finite disks, 
is projected onto the direction E in figure 7 .  The curves of this figure show 
antisymmetry with respect to  midchannel, and indicate that the core of the fluid 
moves, in any direction E ,  with an almost uniform velocity, which is obtainable as 
the average of the boundary velocities a t  the given location and in the given direction. 
The flow is due primarily to  the motion of the boundaries, and, at least superficially, 
i t  resembles Couette flow. The velocity distribution for c = 25O appears to  be the least 
stable; this is indicated in figure 8. This figure displays the Reynolds number, 
calculated a t  the marginal state, versus the corresponding vortex angle E .  The 
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u -  

8 -  

' 6  

4 -  

2 -  

- 

I 
I 
I 
I 
I 
112411.14 

I I I I I 

-1.6 -1.2 -0.8 -0.4 0 0.4 

v, lm 

FIGURE 10. Directional behaviour of velocity (Holodniok et al. 1977); infinite disks, one disk 
rotating, E-' = 275, profile ( b ) :  n, 6 = 0"; 0, 20'; A, 40"; +, 60'; x , 80'; 0 ,  10Oo; V, 120"; 
[XI, 140"; *, 160'. 

complete stability diagram is displayed in figure 9. The critical Reynolds number is 
Re, = 12411.14. This places the point of instability at r / s  = 41.13. 

The other two solutions, profiles ( b )  and c ) ,  obtained by Holodniok et al. (1977) a t  
E-l = 275 are displayed in figures 10 and 11 respectively. These profiles are quite 
unlike profile (a ) ,  but show a great degree of similarity with one another. Both profiles 
( b )  and ( c )  are symmetric with respect to midchannel. The core again moves with an 
almost uniform velocity. However, the core velocity may greatly exceed the velocity 
of either of the boundaries, and the flow resembles Poiseuille flow. Both of these 
profiles are found to be unstable at all values of the Reynolds number, i.e. a t  all 
positions r / s ,  as indicated in figures 12 and 13. 

Experimental profiles of radial and tangential velocity components were obtained 
via laser-Doppler velocimetry in water between finite disks 50.8 ern in diameter. 
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FIGURE 11. Directional behaviour of velocity (Holodniok et al. 1977); infinite disks, one disk rotating, 
E-' = 275, profile (c):  IJ, B = 0'; 0, 20'; A, 40'; +, 60'; X ,  80'; 0, 100'; V, 120'; m, 140'; 
*, 160'. 
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Re X 

FIGURE 12. Diagram of neutral stability; infinite disks, one disk rotating, 
E-' = 275, e = 30°, profile (b). 
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FIGURE 14. Directional behaviour of velocity; finite disks, one disk rotating, E-' = 49.98: 
0, E = 0'; 0, 20'; A, 40'; +, 60'; x ,  80'; 0 ,  100'; V, 120°; m, 140'; *, 160'. 

t 

Details of the apparatus and the measurements are given in the preceding paper 
(Szeri et al. 1983). The velocity components obtained in a gap s = 1.26 cm with 
one disk rotating and the other stationary, are combined and projected onto various 
directions c at r / s  = 14.4 in figure 14. To establish the position of instability for this 
flow we proceed as follows. 

Experimental velocity profiles measured a t  given position r / s  are analyzed for 
stability, as in figure 15. This figure is for r / s  = 14.4 and shows that,  had the profile 
remained similar for larger values for r / s ,  it would have become unstable at the 
(critical) position ( r / s ) c  = 15.41. I n  figure 16 we plot ( r / s ) c  versus r / s .  The position 
of the point of instability is given by the intersection of this curve with the ( r / s ) ,  = r / s  
line. Figure 16 indicates that  flow between finite rotating disks, with one disk rotating 
and the other stationary, is least stable a t  the disk boundary, and in the vicinity of 
the axis of rotation. At midradius where the basic motion approaches the infinite-disk 
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FIGURE 16. Determination of point of instability; finite disks, one disk rotating, 
E-' = 52.30, E = 15'. 
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FIGURE 17. Directional dependence of Reynolds number in neutral state; finite disks, 
one disk rotating, E-I = 52.30. 
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U, E = O0; 0, 20°; A, 40°; +, 60'; X ,  80'; 0,  100'; V, 120O; m, 140O; FT*, 1 6 0 O .  
FIQURE 18. Directional behaviour of velocity; finite counter-rotating disks, E-l = 24.75: 
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FIGURE 19. Determination of point of instability; finite counter-rotating disks, E-' = 24.75, 
E = loo. 
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FIGURE 20. Directional behaviour of Reynolds number in neutral state; finite 
counter-rotating disks, E-' = 24.75. 

solution (Szeri et al .  1983), the stability characteristics of the finite-disk approach 
those for infinite-disk flow. Figure 16 yields r / s  = 15.2 as the position'of neutral 
stability. The critical value of the real Reynolds number is R e  = 795.0 and the 
critical value of the vortex angle is E % 15' from figure 17. 

Velocity profiles, measured between counter-rotating disks and projected onto 
directions characterized by the local angle E ,  are shown in figure 18. The disks have 
equal and opposite rotation, and the velocities are depicted at  r / s  = 10.67. The point 
of instability is in the r / s  = 11.50 position, judging from figure 19. Figure 20 shows 
the directional behaviour of the Reynolds number in the neutral state, giving E = 0' 
for critical conditions. Figure 21 is a diagram of neutral stability for counter-rotating 
disks. The result of figure 21 translates into a critical (local) Reynolds number of 
Re,  = 142.77 for counter-rotating disks. 

Experimentally we are able to clearly define two types of instabilities. They both 
appear to be horizontal roll vortices and are located in the boundary layer of each 
rotating disk. The instabilities were made visible with the aid of various dyes and 



Flow between rotating disks. Part 2 149 

4 

3 
U 

2 

1 

I I I I I I I 

0 1 2 3 4 5 6 
Re X 

FIGURE 21. Diagram of neutral stability; finite counter-rotating disks, E-l = 24.75, E = Oo 

FIGURE 22. Instability between finite disks; N ,  = 0, N ,  = 11.02 rev/min. 

paints. Paint was injected through hypodermic needles, mounted flush with the 
rotating disk and driven by a fusion pump. 

One of the observed instabilities has the appearance of equiangular spirals and 
seems to remain stationary relative to the rotating disk. We identify this structure 
as the type I instability of Faller (1963). With one disk rotating and the other 
stationary, the spiral angle varies between 14' and 20'. with an average value of 
6 = 17'. From the spacing of the vortices we estimate the number of vortices around 
the circumference to  be n x 51. The photographs yield T, = 11.20 ern for the critical 
radius a t  Nl = 0, N ,  = 11.02 rev/min and s = 1.26 em, giving Reg) = 1.8 x lo3 for the 
local Reynolds number at transition (figure 22). This structure is also observable 
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FIGURE 23 (a ,  b ) .  For caption see facing page. 
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FIGURE 23. Instability between finite disks. Photographs taken a t  the rate of one frame per 
second, in sequence (a), ( b ) ,  (c), ( d )  ( N ,  = - N ,  = 2.7 rev/min). 
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between counter-rotating disks (figure 23), but here the vortex angle has the average 
value of e = 14' and the local Reynolds number a t  transition is Reg) = 5.527 x lo2. 
We estimate 30 spirals at' N, = - N2 = 2.7 rev/min and s = 1.26 cm. 

The other type of instability occurs in irregular patterns. The structure is 
concentric on the average, e = Oo, and between counter-rotating disks it first appears 
a t  the radius rc = 17.12 cm when N, = -N2 = 2.7 rev/min, s = 1.26 cm (figure 23). 
This gives Reg) = 9.6 x lo2 for the local Reynolds number a t  second transition. 
Turbulent transition is a t  r = 15.94 cm when N, = - N, = 7.5 rev/min, s = 1.26 cm, 
giving a local Reynolds number Rep) = 1.8 x lo3. The instability waves have a small 
velocity relative to the rotating disk in the radial direction. This is indicated in 
figures 23(a-d), which show photographs of instabilities taken a t  the rate of one 
frame per second. We identify this structure as the type I1 instability of Faller (1963). 
Although type I1 instability has been observed with one disk rotating and the other 
stationary, we were unable to obtain satisfactory photographic evidence in that case. 

The authors wish to thank Mr Ching-Yue Lai of the Mechanical Engineering 
Department, University of Pittsburgh, for valuable assistance received. This material 
is based upon work supported by the National Science Foundation under Grant MEA 
78-21 853. This support is gratefully acknowledged. 

Appendix 
The Galerkin coefficients are given by B-spline inner products as follows : 

Z@ = I,' Bla) (2) Bjb) (2) Bk) (2) dz, 

Z@ = I,'BJb) ( z )  Bk) ( z )  dz, (a  ,< b Q c ) ,  

01 = a+b+c+2( i fa  > 0 ) + 1  (ifb > 0). 

The matrices A , .  . . , N of (21) are defined in terms of these coefficients: 
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